Оптимальное размещение участка слежения в графе решения летчика

Другое » Оптимальное размещение участка слежения в графе решения летчика

При системном проектировании спецификаций алгоритмов бортового интеллекта антропоцентрического объекта конструкторы сталкиваются с необходимостью проверки возможности реализации определившегося состава алгоритмов.

Алгоритмы бортового интеллекта, предназначенные для реализации через алгоритмы деятельности члена экипажа антропоцентрического объекта (АДЭ – алгоритмы деятельности экипажа) оцениваются через его временные запреты на их выполнение. Соотнесение определившихся затрат с допустимыми по внешней обстановке, в которой будет функционировать проектируемый антропоцентрический объект, позволяет судить о реализуемости спроектированного состава АДЭ.

Алгоритмы деятельности оператора при системном проектировании алгоритмов бортового интеллекта представляются в виде графа (ГРО – граф решения оператора), вершины которого – принимаемые оператором решения, начало и конец этапов слежения, а дуги – причинно-следственное отношение вершин. Для автоматизации процесса оценки состава АДЭ разработана компьютерная система «ГРО-оценка». Она предназначена для использования в системе проектирования спецификаций бортовых алгоритмов системообразующего ядра антропоцентрического объекта на стадии разработки их спецификации.

Сложившаяся в настоящее время технология разработки спецификаций бортовых алгоритмов системообразующего ядра антропоцентрического объекта (Ант/объекта) включает в себя следующие этапы:

Г

В

Б

А

a) разработка естественно языкового технического документа «Логика работы системы «экипаж – бортовая аппаратура». Текст документа обычно структурируется по типовым ситуациям (ТС) функционирования проектируемого Антр./объекта и их проблемным субситуациям (ПрС/С) [1]. Семантическая целостность этого технического документа контролируется компьютерной системой «Логика – Текст – Анализ» (ЛоТА);

b) разработка спецификаций бортовых алгоритмов системообразующего ядра Антр/объекта, включающих в себя алгоритмы, предназначенные для реализации на бортовых вычислительных машинах (БЦВМ-алгоритмы), и алгоритмы деятельности экипажа (АДЭ). Этап проектирования поддерживается компьютерной системой «Борт»;

c) оценка реализуемости спроектированной спецификации бортовых алгоритмов:

1) для БЦВМ-алгоритмов – на бортовой цифровой вычислительной системе (БЦВС – сеть БЦВМ),

2) для АДЭ – экипажем за заданное время.

Этап обеспечивается компьютерными системами «БЦВМ-оценка» и «ГРО-оценка»;

d) оценка эффективности разработанной спецификации бортовых алгоритмов. Этап обеспечивается системой компьютерных имитационных математических моделей типовых ситуаций (ИММ-ТС) функционирования Антр/объекта и имитационной математической моделью алгоритмов уровня оперативного целеполагания, в которой обязательно задействован экипаж.

Представлен блок компьютерной системы «ГРО-оценка», рассчитывающей временные затраты экипажа Антр/объекта на реализацию его АДЭ в ТС функционирования Антр/объекта. В системе АДЭ представляется ГРО, включающим в себя алгоритмы принятия решений оператора, их реализацию и алгоритмы слежения. Разрабатываемый блок представляет алгоритм по решению математической задачи оптимизации моментов включения оператора в процессы слежения.

Другие публикации:

Расчёт программы ремонтов и технический обслуживаний электровозов
Годовой пробег электровозов депо A, обслуживающих участок Б-Д: (5.1) Месячный пробег электровозов депо A, обслуживающих участок Б-Д: (5.2) Декадный пробег электровозов депо A, обслуживающих участок Б-Д: (5.3) Годовая программа технических обслуживаний и текущих ремонтов: (5.4) (5.5) (5.6) (5.7) (5. ...

Расчет межпоездного интервала в пакете при автоблокировке
Интервал между поездами в пакете зависит от так называемого расчетного расстояния, которым должны быть разграничены поезда, скорости поездов, а при электрической тяге также от мощности устройств электроснабжения. Расчетное расстояние определяется числом составляющих его блок-участков и их длиной. П ...

Расчет кузова вагона на прочность
При расчете кузова вагона учитывают следующие нагрузки: статическая нагрузка, инерционные силы, вызванные ускорением масс при колебании вагона, силы, возникающие при движении вагона по кривым и стрелочным переводам, аэродинамические силы. Силы приводятся к основным расчетным схемам их приложения: - ...

Актуальное на ссайте

Copyright © 2020 - All Rights Reserved - www.trmotion.ru